
ServoMaster: Rant on Serial/USB
Bridges

Table of contents

1 The Subject.. 2

2 The Scope...2

3 The Shortcut...2

4 The Problem...2

4.1 Electrical Incompatibility.. 3

4.2 Missing Capabilities Discovery Support... 3

4.3 Missing Support for Removable Devices..3

4.4 Proprietary Drivers.. 3

4.5 Runaway Ports...4

5 The Solution...4

Copyright © 2000-2009 Vadim Tkachenko All rights reserved.

1. The Subject

For the scope of discussion, let's define the Serial/USB Bridge, a.k.a. Serial/USB
Adapter, as the device that has the following interfaces, ordered from controlled hardware
to controlling application:

1. A physical serial interface, integrated or external - the controlled hardware is connected
to this interface;

2. A physical USB interface which connects the bridge to the host computer;
3. A virtual serial interface that is, supposedly, undistinguishable from a physical serial

interface - the controlling application is using this port.

2. The Scope

The rest of the article is dedicated to issues related to using devices equipped with
Serial/USB bridges in the context of high uptime, low maintenance, mission critical
applications.

The most important issue is the ability to gracefully recover from hardware failures without
shutting down the entire system. Serial devices don't provide this ability at all, unless they're
specifically engineered to do that - and in any case, even unplugging the serial device and
plugging another one should be strongly discouraged, though it seems to be a common
practice. On the other hand, you can just unplug a USB device and replace with an identical
(or compatible) one.

3. The Shortcut

Apparently, Serial/USB bridges were thought to be a cool idea by embedded hardware
designers - why, you get all the benefits of a USB interface with almost no extra effort -
connect the chip and bingo, your piece of hardware now has a USB interface. Moreover, it is
possible to retain a serial interface as well with a very little extra effort, so your hardware
instantly becomes dual-interfaced.

On the other hand, I bet that driver programmers were equally ecstatic about this, at least at
the beginning. Look, we don't have to write yet another driver - it works already!

4. The Problem

ServoMaster: Rant on Serial/USB Bridges

Page 2
Copyright © 2000-2009 Vadim Tkachenko All rights reserved.

If it looks too good to be true, it usually is.

See, there's just this little pesky problem of the USB protocol being a protocol that supports
removable devices. And you probably remember the days when you didn't dare to plug or
unplug a serial device without shutting off the host computer first, lest you fry them both.
The serial interface never even hinted at a possibility of the other side being removable - it
only has a notion of a communication error, nothing else.

Coupled with the fact that the devices provided with the Serial/USB bridges quite often have
limited intelligence, and some don't even provide any kind of status feedback (they're
write-only)... Houston, we have a problem. Actually, several.

4.1. Electrical Incompatibility

USB devices, by necessity, have to be connected to the power circuit provided by the USB
bus. Also, it may happen that a device originally designed as a serial device doesn't provide a
proper ground separation between the USB provided ground and an external power provided
for the rest of the device. Therefore, it is possible, at least theoretically, that a deficient
hardware design may allow you to fry either itself, or the USB hub or the USB port it's
plugged into.

4.2. Missing Capabilities Discovery Support

(Thanks to Jerry Scharf for reminding) USB devices are able to advertise their capabilities
and functionality, to some extent (at least device class information is available). Serial ports
do not have an ability to provide this information. "Probing" serial ports is ill-advised and
unsafe - data sequences meaningful for one device may break another and cause massive
damage on peripheral equipment.

4.3. Missing Support for Removable Devices

Your application will not be able to take advantage of the fact that USB specification
supports the notion of a removable device.

4.4. Proprietary Drivers

Some of the Serial/USB bridges on the market chose not to publish their USB API. One
pathetic case is Silicon Laboratories CP2101 - and unfortunately, it is used in one of USB
controllers, which is pretty damn good otherwise.

ServoMaster: Rant on Serial/USB Bridges

Page 3
Copyright © 2000-2009 Vadim Tkachenko All rights reserved.

The worst case consequence of this is that you won't be able to use the device with Linux,
which kind of defeats the purpose (for me, at least).

4.5. Runaway Ports

Note:
This section is a total speculation and may be completely untrue, so let's just call it what it is, a speculation, until it is either
confirmed or denied.

What happens to a virtual serial port when the actual hardware is disconnected? Furthermore,
what happens to it when the hardware is reconnected? Is the serial port name the same?

What if I configure the application to use, say, a serial port /dev/ttyS4 when I have the
only Serial/USB bridge plugged in, and then reboot the box and add another Serial/USB
bridge? Is the port name going to be the same? Likewise, if I unplug a device and plug in a
different kind of a device, won't I get a situation when I'm talking not to the device I think
I'm talking to?

5. The Solution

The only real (I mean reliable) solution, at least the way it looks from where I'm standing, is
to ignore the virtual serial port drivers and write the driver directly against the USB
specifications for the Serial/USB bridge. This way, we get the best of both worlds: it is
possible to at least partially reuse the serial driver code, and it is possible to address the
concerns addressed above, at least the removable device part and runaway port issue.

There are downsides to this solution, of course.

First of all, the resent trend in Linux kernel development seems to be to create kernel
modules for all kinds of stuff imaginable, so I would assume, the modules will have to be
removed - and you only pray that your favorite digital camera doesn't have the same kind of
Serial/USB bridge chip as your favorite servo controller.

Then, it seems that capabilities discovery is still not possible to support, due to the fact that it
is the bridge that makes itself visible to the USB bus, not the device controlled by the bridge.

And eventually, this solution implies more work for the software driver developer, and
slower time-to-market, so you have to consider whether the problems outlined above matter
for your cause.

ServoMaster: Rant on Serial/USB Bridges

Page 4
Copyright © 2000-2009 Vadim Tkachenko All rights reserved.

	1 The Subject
	2 The Scope
	3 The Shortcut
	4 The Problem
	4.1 Electrical Incompatibility
	4.2 Missing Capabilities Discovery Support
	4.3 Missing Support for Removable Devices
	4.4 Proprietary Drivers
	4.5 Runaway Ports

	5 The Solution

